The interfacial anisotropic effect induced on inorganic insulator in organic thin film transistors

Jae-II Jung¹, Hak-Rin Kim², June-Yong Song³, and Jae-Hoon Kim¹,²,³,∗

¹Department of Information Display Engineering, Hanyang University
²Research Institute of Information Display, Hanyang University
³Department of Electronics and Computer Engineering, Hanyang University
Heangdang-dong, Seongdong-gu, Seoul 133-791, Korea
∗jhoon@hanyang.ac.kr

In this paper, we studied interfacial anisotropic effect in pentacene-based organic thin film transistors (OTFTs) on an anisotropic insulator fabricated by obliquely evaporated silicon dioxide. It was observed that the obliquely evaporated gate dielectric layer affected molecular ordering. As the evaporation angle of SiO₂ increased, the anisotropic interaction at the dielectric interface and molecular ordering of evaporated pentacenes increased. We obtained the anisotropic ratio of the field-effect mobility for carriers transported parallel and perpendicular to the evaporation direction was 2.9.

1. Introduction

Organic thin film transistors (OTFTs) are attracting much attention to flexible electronic applications such as flexible display, smart card, and radio frequency identification tag. Recently reported OTFTs demonstrated field effect mobility approached or exceeded the value of hydrogenated amorphous silicon TFTs [1],[2]. So, it is enlarging that expectation for commercial use of OTFTs.

In such a rapid development of OTFT’s performances, the results of intensive studies on interfacial properties had an important role. The degree of molecular ordering and crystalline orientation of the organic thin film was proven to be significant factors in determining the performance of OTFTs [3],[4]. In order to enhance molecular ordering and crystalline orientation, there were several efforts to modify interfacial anisotropic properties between the pentacene molecules and the insulating surface. Considering that pentacene is a rigid rodlike molecule similar to the core structure of liquid crystal, it is expected that similar surface-induced order can also be imposed on pentacene [5] such as mechanical rubbing [6], irradiation of polarized UV light [7] on organic insulators.

In this paper, we used the obliquely evaporated silicon dioxide layer as gate insulator in order to align pentacene molecules. As the evaporation angle of SiO₂ increased, the anisotropic interaction at the dielectric interface and molecular ordering of evaporated pentacenes increased. However, in highly obliquely evaporated dielectric surface, it was observed that growth of the pentacene molecules was highly limited due to increased roughness at the interface. The molecular ordering effect and the grain size effect depending on the surface anisotropy and the surface roughness were discussed with the results of the field-induced mobility and the surface morphology.

2. Experimental

Figure 1(a) shows a bottom-gate TFT device with pentacene fabricated on top of anisotropic insulator fabricated by obliquely evaporated SiO₂. The effects of the anisotropic inorganic interface were investigated by oblique evaporation of silicon dioxide with an e-beam evaporator at the angle of 0°, 10°, 20°, and 40° to normal on the thermally grown oxidized surface, as shown Fig 1(b). Then, the 700 Å pentacene film was deposited at a deposition rate of 0.5 Å/s. This film was grown by thermal sublimation at a pressure of 10⁻⁶ torr and the substrate was held at room temperature during pentacene evaporation. Source and drain contact were formed by evaporation a 400 Å gold layer at a deposition rate of 1 Å/s through a shadow mask.
The interfacial anisotropic effect induced on inorganic insulator in organic thin film transistors

Fig. 1(a) Structure of pentacene-based TFT with an anisotropic inorganic dielectric layer, (b) method of oblique evaporation method.

The channel width and length were 300 μm and 50 μm, respectively. The channels of the transistor were aligned parallel and perpendicular to evaporation direction in order to investigate anisotropic electrical properties, in each condition. The sample which direction of current flow is parallel to direction of the evaporation of SiO₂ is called 'sample A', whereas the sample which direction of current flow is perpendicular to direction of the evaporation of SiO₂ is called 'sample B'. For comparison, conventional OTFT with an isotropic silicon dioxide surface was prepared by thermally grown oxidation with about 1300 Å thick on the heavily doped silicon wafer. The I-V characteristics of the OTFTs were obtained by using a semiconductor test and analyzer in ambient condition. And the carrier mobility of the OTFTs were calculated in the saturation regime by classical theory, which is given

\[I_D = \frac{1}{2} C_i \mu \frac{W}{L} (V_{GS} - V_{TH})^2 \]

for \(V_{GS} < V_{TH} \) and \(V_{DS} < (V_{GS} - V_{TH}) \) (1)

\[C_i = \frac{\varepsilon_0 \cdot \varepsilon_r}{d_i} \]

Where \(C_i \), \(V_{TH} \), and \(\mu \) are total insulator capacitance, threshold voltage, and carrier mobility, respectively. The surface morphologies of insulator and evaporated pentacene were measured by atomic forced microscope (AFM) in the non-contact mode.

3. Result and Discussion

In order to induce interfacial anisotropy, we fabricated OTFTs with obliquely evaporated SiO₂ at 20° and measured electrical properties. Figure 2(a) shows a plot of the \(V_D-V_{GS} \) characteristic for the 'sample A'. When gate voltage increased until 35V, the drain current was measured at -0.24 μA. On the contrary, Figure 2(b) shows a plot for the 'sample B'. And it was obtained three times higher drain current than drain current of 'sample A' at the same gate-source voltage, interestingly. The mobility calculated from the Eq. (1) of the 'sample B' was higher than 'sample A', with values of 5.13 x 10⁻⁵ cm²/Vs and 1.49 x 10⁻⁵ cm²/Vs, respectively.

Fig. 2 \(V_D-V_{GS} \) characteristics of OTFTs where the oblique incidences of the SiO₂ evaporation at 20° are (a) perpendicular and (b) parallel to the channel direction.

Such mobility difference depending on direction of evaporation was due to anisotropic charge transport induced by interfacial anisotropy. And threshold voltage has no difference in direction of evaporation. It shows that electrical anisotropy is not caused by discrepancy of insulator surface between 'sample A' and 'sample B' samples.

In organic semiconducting material, charges transport by \(\pi-\pi \) interactions between molecules through the hopping mechanism. During the hopping process, charges propagate along the stacking axis of molecules through their overlapping \(\pi \)-orbitals [5]. Accordingly, mobility
difference shows that 'sample A' has more overlapping \(\pi \)-orbitals than 'sample B', which means that the anisotropic interface affected molecular ordering of pentacene molecules.

However, when we evaporated SiO\(_2\) at a smaller angle of 10°, there was no electrical anisotropy, as shown in Fig. 3. It represents that surface anisotropy which can affect to molecular ordering of pentacene is induced under special condition. Whereas pentacene on SiO\(_2\) obliquely evaporated at 40° has electrical anisotropy but lower mobility than pentacene on obliquely evaporated at 20°.

![Graph showing variation of field effect mobilities of pentacene on obliquely evaporated SiO\(_2\) at various angle.](image)

Fig. 3. Variation of field effect mobilities of pentacene on obliquely evaporated SiO\(_2\) at various angle.

In order to find out the reason of decrease mobility in spite of existence of surface anisotropy, we measured morphology of surface with AFM. Figure 4 is AFM images of the topology of obliquely evaporated SiO\(_2\) before pentacene evaporated.

![AFM images of surface of obliquely evaporated SiO\(_2\) at (a) 0°, (b) 10°, and (c) 40°.](image)

Fig. 4. AFM images of surface of obliquely evaporated SiO\(_2\) at (a) 0°, (b) 10°, and (c) 40°.

The RMS values of obliquely evaporated SiO\(_2\) at 0°, 10°, and 40° are 0.298 nm, 0.439 nm, and 0.667 nm, respectively. It shows that steep evaporation angle induces much roughness of surface. Rough surface of insulator leads reduction of diffusion length and energy barrier for nucleation cause to decrease grain size. Small grain size causes a significant decrease of mobility because grain boundaries can act as trap sites in charge transport and limit the carrier mobility [3],[8]. Accordingly, though OTFT fabricated by obliquely evaporated SiO\(_2\) at steep angle has high electrical anisotropy, the field-effect mobility is decreased by grain boundary effect.

An increase of interfacial anisotropy by the oblique evaporation is interact with an augmentation of surface roughness. Therefore, to obtain high field effect mobility and electrical anisotropy, it is required to optimize evaporation condition such as evaporate angle and deposition rate.

4. Conclusion

We studied the enhancement of molecular ordering and crystal orientation through obliquely evaporated SiO\(_2\) as gate insulator. The sample which evaporated at 20° has much high mobility than samples which evaporated at other degrees and anisotropy ratio between perpendicular and parallel direction was 2.9. However, as evaporation angle is steeper, grain boundary effect induced by surface roughness is more increased. The carrier mobility and electric anisotropy decreased, again. The interfacial anisotropy effect and grain boundary effect in oblique evaporation interacted each other. We believe that further optimization of oblique evaporation in OTFTs would result in more anisotropic electric property and more high field effect mobility.

Acknowledgement

This research was supported by a grant (F0004052) from Information Display R&D Center, one of the 21st century Frontier R&D programs funded by the Ministry of Commerce, Industry and Energy of the Korean government.

References

The interfacial anisotropic effect induced on inorganic insulator in organic thin film transistors

Proceedings of the 9th

KOBEA
LIQUID CRYSTAL
CONFERENCE

Chungnam National University, Daejeon, Korea
July 21–22, 2004

Organized by
Korea Liquid Crystal Society
Institute of Quantum Systems
P7. Self-Assembly of Colloidal Particles on a Patterned Surface with Wettability
Sang-Wook Lee, Yoonseuk Choi, and Sin-Doo Lee, Seoul National University

P8. Plasma Beam-Assisted Liquid Crystal Alignment under Atmospheric Pressure
E. Jang, H. Song, and S.-D. Lee, Seoul National University

P9. Narrow Viewing Angle Display Using a Fringe-field Driven Hybrid Aligned Nematic Liquid Crystal Display

P10. Stability of liquid crystal alignment to the electric field
Yumi Oh*, Ji-Young Im, Eun-Kyu Lee, Jong-Hyun Kim, Chungnam National University

P11. Change of anchoring energy with different alignment methods
Ji-Young Im*, Yu-Mi Oh, Eun-Kyu Lee, Jong-Hyun Kim, Chungnam National University

P12. In situ measurement of sound propagation in liquid crystal cells
Jae-Hyeon Ko1, Yoon Hwaee Hong2, Jong-Hyun Kim1, 1Hallym University, 2Pusan National University, 3Chungnam National University

P13. Periodic patterned LC alignment layers by CFL method
M.-S. Shin1, H.-R. Kim2, and J.-H. Kim1,2,3,1Department of Information Display Engineering, Hanyang University, 2Research Institute of Information Display, Hanyang University, 3Department of Electronics and Computer Engineering, Hanyang University

P14. Electrically Controllable Microlens Array based on a Birefringent Bilayer System of Liquid Crystalline Polymer and a Liquid Crystal
Kwang-Ho Lee1, Yoonseuk Choi2, Hak-Rin Kim1, and Jae-Hoon Kim1,2,3,1Department of Electronics and Computer Engineering, Hanyang University, 2Research Institute of Information Display, Hanyang University

P15. Transfective LCD in a Patterned Vertically Aligned Mode with a Single Cell Gap
Tae-Hee Lee1, You-Jin Lee2, Hak-Rin Kim3, Yoonseuk Choi3, and Jae-Hoon Kim1,2,3,1Department of Electronics and Computer Engineering, Hanyang University, 2Department of Information Display Engineering, Hanyang University, 3Research Institute of Information Display, Hanyang University

P16. The interfacial anisotropic effect induced on inorganic insulator in organic thin film transistors
Jae-II Jung1, Hak-Rin Kim2, June-Yong Song3, and Jae-Hoon Kim1,2,3,1Department of Information Display Engineering, Hanyang University, 2Research Institute of Information Display, Hanyang University, 3Department of Electronics and Computer Engineering, Hanyang University

P17. Brightness-Enhancement of Transfective LCD having a Unified Configuration
Yong-Woon Lim, Jinyool Kim, Dong-Woo Kim, and Sin-Doo Lee, Seoul National University