Pre-Polymer Effect in Polymer-Liquid Crystal Composite System for Display Applications

Ho-Jun Kim, You-Jin Lee, Chang-Jae Yu, and Jae-Hoon Kim Dept. of Electronic Engineering, Hanyang University, Seoul 133-791, Korea *Tel.:82-2-2220-0343, E-mail: jhoon@hanyang.ac.kr*

Liquid crystal (LC) devices with plastic substrates have drawn considerable attention for next-generation information displays because of their excellent portability, such as light weight, thin packaging, and flexibility [1]. For the flexibility of plastic LC device, it requires a stabilization of LC mode, mechanical stability, and tight adhesion of two substrates. It has been wide studying to solve such problems by introducing the phase separation of polymer-LC mixture, such as polymer dispersed LC, polymer network LC, phase-separated composite film (PSCOF) of LCs, and pixel isolated LC (PILC) mode [2-6]. Among them, PSCOF and PILC mode show excellent electro-optic characteristics, good mechanical stability, and good adhesion of two substrates. After phase separation, however, the unreacted pre-polymers and unfixed floating polymers in polymer-LC composite systems give rise to degradation of the device performance.

In this paper, we report influence of the unreacted pre-polymers and unfixed floating polymers in polymer-LC composite systems on display performance. We quantitatively evaluate the in-situ polymerization ratio during phase separation in polymer-LC composite systems. Also, we discuss the correlation of the unreacted pre-polymers and unfixed floating polymers with display performance such as uniformity, image sticking, operating voltage, transmittance, response time, and so on.

Acknowledgment

This work is supported by the National Research Foundation of Korea (NRF) grant funded by the Korea government (MEST) (2012R1A2A2A01046967) and LG display Co., Ltd.

References

- 1. G. P. Crawford, Flexible Flat Panel Displays, John Wiley and Sons, New York (2005).
- 2. V. Vorflusev and S. Kumar, Science 283, 1903 (1999).
- 3. T. Qian, J.-H. Kim, S. Kumar, and P. L. Talor, Phys. Rev. E 61, 4007 (2000).
- 4. J.-W. Jung, S. K. Park, S. B. Kwon, and J.-H. Kim, Jpn. J. Appl. Phys. 43, 4269 (2004).
- 5. S.-J. Jang, J.-W. Jung, H.-R. Kim, M. Y. Jin, and J.-H. Kim, Jpn. J. Appl. Phys. 44, 6670 (2005).
- 6. Y.-J. Lee, S.-J. Jang, J.-W. Jung, H.-R. Kim, M. Y. Jin, Y. Choi, and J.-H. Kim, *Mol. Cryst. Liq. Cryst.* 458, 81 (2006).