In this paper, we demonstrate the increased birefringence by tapering a F2B-I1 F2B-I2 F2B-I3 F2B-I4 F2B-I5 F2B-I6 F2B-I7 F2B-I8 F2B-I9 F2B-I10. We demonstrate a novel optical fiber laser with suppression of multiple longitudinal modes by using a microfiber-based-ring cavity. The microfiber-based-ring cavity with the fiber diameter of ~2 μm and the FSR of the cavity of 27.49 GHz was exploited. The suppression of the multiple longitudinal modes was measured to be ~10 dB.

We demonstrate a novel optical fiber laser with suppression of multiple longitudinal modes by using a microfiber-based-ring cavity. The microfiber-based-ring cavity with the fiber diameter of ~2 μm and the FSR of the cavity of 27.49 GHz was exploited. The suppression of the multiple longitudinal modes was measured to be ~10 dB.

Characterization of temperature dependent performance of a fiber amplifier is very important especially in high power regime. In this paper, we present experimental studies regarding temperature dependence of an ytterbium (Yb) doped phosphosilicate fiber. Phosphosilicate based Yb-doped fibers demonstrate both negligible photo darkening, longer lifetime than aluminosilicate based fibers and higher damage threshold than the phosphate glass based fibers. Characterization of fiber cross-sections (emission and absorption) and emission lifetimes are carried out for temperatures between 26 °C and 150 °C. The lifetime of the Yb-doped phosphosilicate fiber decreased from 1,502 ms at room temperature to 1.475 ms at 150 °C. Emission spectra of the fiber showed clear difference in peaks and valleys where each wavelength of the emission spectra corresponds to different emissions from metastable states as function of temperature.

Yu-jung Lee, Geun Chang Choi, Hyuntae Kim, Luis Alonso Vasquez-Zuniga, Yoonchan Jeong, and Jong Lee

We present experimental studies regarding temperature dependence of an ytterbium (Yb) doped phosphosilicate fiber. Phosphosilicate based Yb-doped fibers demonstrate both negligible photo darkening, longer lifetime than aluminosilicate based fibers and higher damage threshold than the phosphate glass based fibers. Characterization of fiber cross-sections (emission and absorption) and emission lifetimes are carried out for temperatures between 26 °C and 150 °C. The lifetime of the Yb-doped phosphosilicate fiber decreased from 1,502 ms at room temperature to 1.475 ms at 150 °C. Emission spectra of the fiber showed clear difference in peaks and valleys where each wavelength of the emission spectra corresponds to different emissions from metastable states as function of temperature.

Characterization of temperature dependent performance of a fiber amplifier is very important especially in high power regime. In this paper, we present experimental studies regarding temperature dependence of an ytterbium (Yb) doped phosphosilicate fiber. Phosphosilicate based Yb-doped fibers demonstrate both negligible photo darkening, longer lifetime than aluminosilicate based fibers and higher damage threshold than the phosphate glass based fibers. Characterization of fiber cross-sections (emission and absorption) and emission lifetimes are carried out for temperatures between 26 °C and 150 °C. The lifetime of the Yb-doped phosphosilicate fiber decreased from 1,502 ms at room temperature to 1.475 ms at 150 °C. Emission spectra of the fiber showed clear difference in peaks and valleys where each wavelength of the emission spectra corresponds to different emissions from metastable states as function of temperature.

Yu-jung Lee, Geun Chang Choi, Hyuntae Kim, Luis Alonso Vasquez-Zuniga, Yoonchan Jeong, and Jong Lee

In this study, using the scattering properties of the diffuser to measure the bidirectional scattering distribution function, the LightTools program was conducted using the optical simulation.