Liquid Crystal Alignment by Atomic Force Microscopic nanolithography

Soo In Jo¹, Jin Seog Gwag², Young-Ki Kim³, You-Jin Lee³ and Jae-Hoon Kim ¹²³

¹ Department of Electronics and Computer Engineering, Hanyang University, Seoul 133-791, Korea,
² Research Institute of Information Display, Hanyang University, Seoul 133-791, Korea,
³ Department of Information Display Engineering, Hanyang University, Seoul 133-791, Korea,

We fabricate a twisted nematic (TN) cell with surface liquid crystal (LC) alignment layer scratched by scanning atomic force microscopy (AFM) tip. To check possibility of this technique for liquid crystal display (LCD) application, the electro-optic characteristics of the cell is examined broadly.

1. Introduction

Typically, rubbing and photo-alignment methods are widely used for liquid crystal (LC) alignment. However, they can control simply surface morphology which has influence greatly on LC behavior[1,2,3]. The atomic force microscopy (AFM) nanolithography has emerged as an important research area producing nanoscale-surface undulation for LC alignment[4,5]. And it is well known that directors of liquid crystal have a tendency to align parallel to the groove shape solid surface.[6] Recently, in order to make LC pixel with uniformly distributed submicron patterns, nanopatterning by AFM has been suggested [7]. However there has been little reported on the voltage-dependence-transmittance characteristic of the LC cells fabricated with such surface morphologies which produce nearly zero pre-tilt at homogeneous alignment that may cause disclination line when voltage is applied to LC cell.

So as to solve this pretilt problem, another nanolithography method was reported [8], but does not has unidirectional pre-tilt since there is no preferring direction between both alignments (x or -x directions) even though LCs is not planar state (zero pretilt).

In the paper, we demonstrate uniformly and unidirectionally distributed pre-tilted twist nematic (TN) cell using a slope nanosize-groove pattern driven by a continuously modulated force of AFM tip at a scanning line and observe the electro-optic characteristics to confirm the pretilt generation at this technique.

2. Experimental

ITO glass spin-coated with a layer of polyimide (SE7492, Nissan chemical) which currently used for homogeneous alignment and its pretilt angle is known as 5 degrees. And we used another homogeneous polyimide (RN1199, Nissan chemical), has zero pretilt angle, to inquire the pretilt angle created by AFM nanolithography. Each glass is spin-coated at 1000 rpm for 10 sec and 2500 rpm for 10 sec. And it is pre-baked at 100°C for 10min, hard-baked 210°C for 1 hour on the hot plate to completely imidize the surface.

AFM nanolithography process was performed by commercial AFM (XE-100, Park system) using the contact mode with various load force. Diamond coated cantilever (905U-DT-NCHR) is used and its radius of the apex is almost 20-30 nm.

To produce nanoscaled surface morphology on the LC alignment layer, we create a scratch on the each polyimide layer by AFM nanolithography process. Differ from present method [4], we make a directional linear pattern with depth about 20 nm by the AFM contact mode with cantilever force of 4000 nN. And we make the scratch line with unidirectional way due to difference of the lithographed shape when the tip move forward and backward.

Fig.1. shows the topological AFM image of lithographed area. The pitch of the surface morphology were 1um, respectively. The protruded beside the
polyimide produced by lithography. And we add a cleaning process after lithography to remove this useless area.

The patterned polyimide substrate with indium tin oxide (ITO) electrode was assembled with counter ITO substrate coated by same polyimide rubbed perpendicular to nanolithography direction to fabricate TN cell. LCs (MAT-03-382) were injected in the sandwich cell along nanolithography direction and the cell was sealed by UV curable sealant.

Figure 2 is the microscopic images showing the electro-optical changes of the fabricated TN cells between crossed polarizers. Upper three images show microscopic images of TN cell fabricated with SE7492 at (d) 0V, (e) 3V, (f) 6V of TN cell with RN1199.

In previous experiment with RN1199, when the voltage across the two glass was induced, the director of the liquid crystal rotate randomly and it makes the disclination line texture. But, with our new method, liquid crystal director of the lithographed area arranged uniform direction when the voltage induced. This result indicates that the pretilt angle of LC can be controlled by the proposed AFM technique. In this work, we cannot measure the pretilt angle of this sample due to lithography of very small area. But we expect that this technique is useful to control surface LC behavior.

Acknowledgement

This research was supported in part by a grant (F0004120-2008-31) from Information Display.
R&D center, one of the 21st Century Frontier R&D Program funded by the Ministry of Knowledge Economy of Korean government.

References