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Abstract We present fabrications of mechanically stable plastic liquid crystal displays. The
micro-structures support the stable molecular alignment of liquid crystals. Various tight
bonding techniques are applied for enhancing the durability of the device.

Introduction

In recent years, liquid crystal (LC) devices
using plastic substrates have drawn much
attention for their versatile applications such
as smart cards, PDA, and head mount
displays because of their flexibility, lighter
weight, thinner packaging, and lower
manufacturing cost through continuous roli-
to-roll processing’. Different LC modes
have been proposed in plastic substrates
including twisted nematic (TN), cholesteric,
PDLC, and bistable FLC modes. But, the
mechanical stability of these devices were
not satisfactory except for PDLC, since a
solid mechanical support for preserving the
molecular alignment of LCs is insufficient
due to the lack of sustaining structure. Also,
the device using PDLC has the limited
applications since it only can use the
scattering effect of the light. Therefore, the
key technology to realize a practical device
for flexible applications is to keep the
uniform gap between flexible substrates
against external deformations.

In this presentation, we proposed various
fabrications to produce plastic liquid crystal
display (LCDs) with enhanced mechanical
stability by -using the polymer micro-
strucfures and new bonding techniques.

- The electro-optic (EO) characteristics of the

samples by these methods are comparable
to that of conventional LCDs and are not
varied significantly when we applied high
external deformations.
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Pixel-lsolated Liquid Crystal Structure
for Plastic LCD

The polymer walls and/or networks as
supporting structures have been proposed
and successfully demonstrated?. But, these
methods have the weaknesses such as
requiring high electric field to initiate the
anisotropic phase separation or reduced
optical properties and increased operating
volitage due to the remaining " residual
polymers. We proposed the stability
enhanced LC mode using anisotropic phase
separation®®. In these modes, LC
molecules are isolated in pixels surrounded
by interpixe! vertical walls and horizontal
polymer layers on the upper substrate,
namely, the pixel-isolated LC (PILC) mode.
The mechanical support provided by the
rigidity of surrounding structures and the
adhesive property of polymer maintain the
uniform gap under bended circumstances.
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Fig. 1. (a)Schematic diagram of PIC
structure. (b)Cross-sectional images of
PILC sample by SEM.

Device configuration of PILC structure is
shown in Fig. 1(a). The polymer walls can
be made by various methods such as 3-D




@ ‘separation®’, photolithography using
aslst®, or stamping technique®. The 3-
Rlaotropic phase separation supports the
[ fabrication, while the other methods
reate more fine structures. After
iiting walls on the bottom substrate,
fopped LC/polymer mixture and
d the phase separation by UV
lon. The thin polymer layer formed
“upper substrate support the tight

of two substrates. The cross-
dhal images are shown in Fig. 1(b).

. 2. Alignment textures (a)of 3-D phase
yparation method with nematic (left} and

nd PILC sample using phoforesist wall
right) in the presence of external point
pressure with a sharp tip.

It is notable. that. this PILC mode can be
applicable to realize any LC modes using
ematic and ferroelectric LCs as we
demonstrated the resultant textures in Fig.
~2(a). With the pressure test in Fig. 2(b), it is
clear that the PILC structure can support
the mechanical stability of the device.
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Fig. 3. Transmittance vs applied voltage
(a)for normal and (b)for PILC celfl at various
bending states.

-

The EO characteristics of normal and PILC
samples are shown in Fig. 3. Decreasing
the curvature (R) means increasing the

degree of bending. For the normal plastic
sample, the transmittance and contrast ratio
are reduced about 70% -at the maximum
degree of bending. However, the PILC cell
shows almost the same behavior except for
a minor decrease in the low voltage regime.
It is clear that this mode shows not only
good mechanical stabilty but also
equivalent optical behavior with respect to
the normal mode without a polymer.

Plastic LCD by Patterned Rigid Spacers
and Micro-contact Bonding Technique

In the PILC structure, the applicable LC
modes are limited due to the lack of
alignment layer at upper substrate. To
overcome this problem, we deve!oPed
plastic LCDs supported by rigid spacers’. In
this device, the UV curable adhesive are
placed on top of the rigid spacers by the
micro-contacting technique and irradiated to
bind two plastic substrates tightly (Fig. 4(a)).
Since the alignment layer can be used on
the top substrate, the different LC modes
such as TN mode can be applied in this
plastic LCD (Fig. 4(b)).
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Fig. 4. (a)Fabrication process using micro-
contact bonding technique. (b)Device
configuration with TN mode. (c)Design of
patterned rigid spacers.

To prevent the overflow of adhesive during
the bonding process, we designed the rigid
spacers. as the assembly of four micro-
pillars (Fig. 4(c)). The excessive adhesive is
confined into the rigid spacers and results in
the fine optical properties of the device. The
measured EQO characteristic of our plastic
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TN sample was comparable to the
conventional case (threshold voltage: 2V,
driving voltage: 6V).

Table 1. Mechanical stability test by
increasing weight of the loads before

breaking the sample.
( Dimension: IV / cm? )

Test 1 2 3 4
Max | 25 | s.00 500 | 3.01
Loads

maximum capable loads without breaking
sample were measured as 4.56N/cm?,

Single Substrate Plastic
Laminating Technique .

One of the advantages of plastic LCD is the
use of cost-effective roli-to-roll process. The
single substrate LCD is regarded to be very
suitable one to apply this process. Recently,
we developed the simple technique for
fabricating mechanically stable plastic LCD
with a single substrate®.

LCD by

@ '
Fig. 5. Fabrication of single substrate plastic
LCD {(a)Preparation of cover fim and
bottom substrate with polymer walls.
(b)Laminating process. (c)UV irradiation for
solidification. (d)LC injection.

In our structure, a cover film of UV epoxy
was tightly attached to the bottom wall
structure of photoresist by laminating
technique, and LCs were uniformly aligned
by Berreman effect of micro-grooves formed
on the cover film (see, Fig. 5). '

Uniform LC alignment was verified by the
microscopic textures. In the field-off state,
the initial fexture showed the dark state
because LCs were aligned homogeneously

In our mechanical stability test, the

along the rubbing directions. As increasing
the applied voltages, the textures became
brighter due to in-plane reorientation of LCs
along the field direction. All textures under
the applied voltages were also highly
uniform,

: | oV YAV
Fig. 6. (a)Microscopic textures of the single
substrate LCD. (b)Cross-sectional SEM
image of the micro-grooves. Polarizing
microscopic images at applied voltages of
(c)OV, and (d)7V. :

Conclusions

We reported various fabrications: of
mechanically stable plastic LCDs. The
proposed devices are expected to play a
critical role in the next-generation flexible
displays. :
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